
JOINT DARK ENERGY MISSION (JDEM)
PROJECT

Quality Information Distribution Service (QuIDS)

Concept of Operations (ConOps)

February 27, 2010

Fermi National Accelerator Laboratory

Batavia, Illinois

1

REVISION STATUS

Version Date Changed By Description

Original 2/27/10 Erik Gottschalk Baseline

2

Table of Contents

1 Introduction 5
1.1 Overview . 5
1.2 Goals . 6

2 Scope 8
2.1 Identification . 8
2.2 Document overview . 9
2.3 System overview . 9

3 Referenced documents 12

4 Current system or situation 12
4.1 Background, objectives, and scope 12
4.2 Operational policies and constraints 14
4.3 Description of the current system or situation 14

5 Justification for and nature of changes 15
5.1 Justification of changes . 15
5.2 Description of desired changes 17
5.3 Changes considered but not included 18

6 Proposed system 18
6.1 Background, objectives, and scope 18

6.1.1 Access science data . 19
6.1.2 Access execution environment data 20
6.1.3 Establish Quality of Service settings 20
6.1.4 Provide Python bindings 21
6.1.5 Measure performance limits 21
6.1.6 Allow data access over the Wide Area Network (WAN) 21
6.1.7 Create a system that is usable by scientists and ad-

ministrators . 22
6.2 Operational policies and constraints 22
6.3 Description of the proposed system 23
6.4 Support environment . 25

3

7 Operational scenarios 25
7.1 User observing campaigns . 25

7.1.1 Check status of previously submitted campaign . . . 25
7.1.2 Actively monitor campaign 26
7.1.3 Investigate system characteristics of running jobs . . 26
7.1.4 Express interest in job failures 27
7.1.5 Investigate a failed job 27
7.1.6 New user investigates the monitoring system 27

7.2 Publishing scenarios . 27
7.2.1 Publish job success information 28
7.2.2 Publish job failure information 28
7.2.3 Publish job process information 28
7.2.4 Publish calibration histograms 29
7.2.5 Publish calibration images 29

7.3 Control scenarios . 29
7.3.1 Modify the frequency of a given measurement 29

7.4 Test-cases used to evaluate QuIDS 29

8 Analysis of the proposed system 30
8.1 Summary of improvements 30
8.2 Disadvantages and limitations 31

8.2.1 Qualitative features . 31
8.2.2 Quantitative features 32

8.3 Alternatives and trade-offs considered 32

9 Notes 32

10 Glossary 34

4

1 Introduction

The purpose of this document is to describe the quantitative and qualitative
characteristics of a message passing system named “Quality Information
Distribution Service” (QuIDS). The main function of QuIDS is message
passing for quality control (QC) data in a distributed data processing envi-
ronment. The overall goal is to reduce the amount of time spent on routine
tasks associated with QC, and to reduce the number of ways of interacting
with a QC system. The specific goal for QuIDS is to transport status and
monitoring information from calibration and data processing workflows to
users, and give users the ability to request QC information they need. Users
of QuIDS are likely to include scientists, engineers, and operators who will
receive QC data for monitoring purposes, and software developers who
will develop monitoring tools. QuIDS is based on the Data Distribution
Service (DDS), a customizable Quality of Service (QoS) publish/subscribe
standard from the Object Management Group (OMG). A demonstration
system is being developed at Fermilab to provide a test environment to
evaluate DDS for the Joint Dark Energy Mission (JDEM) Science Operations
Center (SOC). The SOC is part of the JDEM Ground Data System (GDS).
The significance of this evaluation of DDS is that existing control and moni-
toring tools used in distributed computing environments, such as today’s
“grid” or “cloud” computing environments, are considered inadequate for
efficient, reliable, and fault-tolerant quality control.

1.1 Overview

A demonstration data processing system is being developed for JDEM to
demonstrate existing infrastructure at Fermilab, and to evaluate candidate
technologies for trade studies. One of the technologies we are evaluating
for JDEM is the DDS publish/subscribe message passing standard. Our
implementation of DDS for quality control is called QuIDS.

The demonstration system processes data using the Monitor Telescope
Pipeline (MTPIPE), which was originally developed for the Sloan Digital
Sky Survey (SDSS). The main purpose of the system is to provide a testbed
for JDEM data processing in a distributed computing environment. An
important aspect is that this system must be able to transport status and
monitoring information from MTPIPE to users of the system, and it must
be able to respond to requests for more information when the information

5

is available but not automatically sent to a user. For example, there are
numerous data products generated by MTPIPE and most of them are not
included in the monitoring information sent to users for quality control.
Therefore, the demonstration system must be able to respond to requests
for specific data products. Another aspect of the demonstration system is
that it must be fault tolerant. For demonstration purposes the mitigation of
fault conditions will be limited to a few representative examples.

JDEM data processing workflows are expected to operate at Fermilab,
which implies the use of grid- or cloud-based computing to take advantage
of existing capabilities at Fermilab (such as Fermigrid) and the economy
of scale that results from the use of these capabilities. For the demon-
stration system we will use the MTPIPE data processing application as
the monitored application. We expect that QuIDS will provide reliable,
fault-tolerant message passing for data quality monitoring purposes and
for command and control of the QC system. This should lead to reliable
and responsive operation of data processing applications. Moreover, we
want to provide monitoring information to JDEM collaborators who are
not located at Fermilab, and provide a QC system for JDEM that operates
outside the Fermilab computing environment. For evaluation purposes,
QuIDS must be implemented to provide access to tunable parameters that
can be used to evaluate performance limits of DDS for different operating
scenarios. Furthermore, QuIDS should be designed to be easy to use to
encourage widespread use in JDEM.

1.2 Goals

QuIDS is being developed together with the Tech-X Corporation, which
has received a Phase-1 SBIR grant (see Identification section). We envision
two phases of development for QuIDS. The first phase corresponds to the
Phase-1 SBIR grant. We have established goals together with Tech-X for a
coordinated development effort. Moreover, we have started to establish
goals for the second phase in anticipation of a possible Phase-2 SBIR grant
that would allow Tech-X to continue its development efforts.

There are five goals for Phase 1:

1. Access science data

The goal is to provide access to the data products produced
by MTPIPE and specified by the Fermilab GDS team using the

6

Unified Modeling Language (UML). These data products will
be accessible as DDS topics. A related goal is to investigate how
users can request specific data products and subsets of data
products by specifying the granularity of requested data.

2. Access execution environment data

The goal is to provide access to information that characterizes
the execution environment for MTPIPE data processing jobs.
The information of interest will be specified by the Fermilab
GDS team.

3. Establish Quality of Service settings

The goal is to investigate how one establishes Quality of Service
settings that guarantee that mission critical data are delivered
as requested, and to establish settings that can improve overall
system performance while achieving best effort delivery.

4. Provide Python bindings

The goal is to provide Python bindings that QuIDS users can
use to access data.

5. Measure performance limits

The goal is to provide message passing capabilities with vary-
ing degrees of Quality of Service (QoS) and tunable parameters,
such as message size and messaging rate, to measure the perfor-
mance of the messaging software.

If these goals are satisfied by Phase 1, then Tech-X will submit a proposal
for a Phase-2 SBIR. With that in mind we have identified two goals for a
future Phase-2 SBIR. We believe that additional goals will be identified
during the course of the Phase-1 SBIR. The two goals we have identified at
this time are the following:

1. Allow data access over the Wide Area Network (WAN)

The goal is to provide message passing capabilities for nodes
that process data in the Fermilab computing environment and
communicate with computing systems outside the Fermilab
network.

7

2. Create a system that is usable by scientists and administrators

The goal is to provide a message passing system that can be
deployed in the Fermilab distributed computing environment,
and is maintainable and easy to use.

2 Scope

This ConOps document applies to the first phase of QuIDS development.
The scope is limited to the evaluation of OpenSplice DDS, which is an open-
source implementation of DDS. The evaluation is specific to the JDEM GDS,
and specific to data processing and monitoring of QC data at Fermilab.
Depending on the outcome of this evaluation, DDS may be considered as a
candidate for the primary data transport mechanism to transport science
and engineering data between worker nodes in JDEM data processing
workflows. Since JDEM does not yet have a data processing system that
can serve as a testbed, we are developing a testbed that processes SDSS
data using MTPIPE data processing code. The MTPIPE application will be
the monitored application in our demonstration system. The development
of the system is being done jointly by DOE’s JDEM GDS team and by
developers from the Tech-X Corporation.

2.1 Identification

Tech-X Corporation has received a Department of Energy (DOE) Phase-1
SBIR grant (DOE/SBIR 2009 DE-PS02-08ER08-34) to work on evaluating
DDS for quality control for JDEM data processing. The grant application
title is “QuAI: A Quality Assurance Infrastructure for Data-Centric Appli-
cations.” The SBIR grant addresses the need for reliable message passing in
JDEM data processing workflows that operate in a distributed computing
environment. In this context, QuAI is a component of QuIDS in that it
encompasses the DDS-specific parts of the demonstration system. If the
evaluation of DDS is successful, Tech-X will submit a proposal for a Phase-2
SBIR to develop a full implementation of QuAI for JDEM.

8

2.2 Document overview

The ConOps document describes needs and expectations for the QuIDS
message-passing system, and is intended for the following stakeholders:

• DOE’s JDEM GDS team (FNAL and LBNL),

• DOE’s JDEM Project Office,

• DOE’s JDEM Scientists,

• Fermilab Management,

• Tech-X Corporation.

DOE’s JDEM GDS team includes developers and users (engineers and
scientists). Members of the team are the authors of this ConOps document,
which has the purpose of communicating users’ needs and expectations
for QuIDS. Moreover, the document is being written by both users and
developers, therefore it also communicates developers’ understanding of
QuIDS and how it will fulfill users’ needs. We expect that the ConOps will
serve as a basis for developing requirements for QuIDS, and that developers
will use the document as guidance for the development of QuIDS itself.
This includes Tech-X developers.

The ConOps is written to provide a high-level view of QuIDS (without
technical details), the goals for QuIDS, a description of functionality, and a
step-by-step description of how QuIDS should operate and interact with
users and external interfaces (see Operational scenarios). We believe this
will be useful for the JDEM Project Office and Fermilab Management. We
anticipate that this document will serve as a model for future JDEM GDS
ConOps documents.

2.3 System overview

The main function of QuIDS is to provide message passing for QC data in a
distributed computing environment. We anticipate that QuIDS will be part
of the JDEM SOC Quality Control System (QCS), which will provide control
and monitoring for the SOC. The QCS is the system that initializes, con-
trols, collects and monitors status and statistics for hardware and software
components of the SOC. The QCS provides the necessary capabilities for

9

data quality, mission quality, and resource monitoring for data processing
workflows and instrument QC.

Our conceptual design of the QCS software includes three architectural
elements. The elements are:

• Quality Control Modules (QCMs) that archive QC data and monitor
processes, resources, and data products generated or consumed by
the SOC;

• Fault Recovery Modules (FRMs), each of which performs an action
when a QCM reports a fault;

• and QuIDS, which provides the message passing that is needed to
integrate the QCMs, FRMs, operations displays, error logging subsys-
tem, and archiving subsystem for QC data.

Figure 1: Block diagram showing the QCS in the context of a data reduction
system processing Level 0 data. QuIDS is part of the QCS and includes the
message passing system, message readers and writers, and the QC API.

10

Figure 1 shows elements of the QCS and its integration with other
systems involved in JDEM SOC data processing. The figure shows worker
nodes that process Level 0 data. Individual Data Reduction Modules
process data, and one of the modules in the figure (DRM6) is depicted as
using the QC Application Programming Interface (API) to send data to the
QCS. The figure also shows Data Reduction Framework Sensors (DRFS’s)
that monitor the data processing workflows and use the same QC API to
send monitoring data to the QCS. A managed data store, such as a relational
database, provides archival storage for QC data. Operations displays (local
and remote) provide users with alerts, data visualization tools, and access
to on-line documentation, version control, and issue tracking.

Since the aforementioned systems exist in the form of a conceptual
design and JDEM does not yet have a data processing system that can
serve as a testbed, we are developing a testbed that processes SDSS data
using the MTPIPE data processing code. This testbed is being developed to
evaluate software systems, such as QuIDS. An important aspect of QuIDS
is its control capability, which will give users the ability to request specific
data for monitoring purposes.

The development of QuIDS is expected to occur in two phases. The
first phase is supported by funding from the DOE KA13 Budget and Re-
porting (B&R) category, and by a DOE Phase 1 SBIR grant awarded to
Tech-X Corporation. The development team consists of developers in the
Fermilab Computing Division and Tech-X developers. If the first phase is
successful, then we anticipate that there will be additional funding from
DOE to support further development of QuIDS for JDEM. Furthermore,
Tech-X anticipates submitting a proposal for a Phase-2 SBIR to support
their development efforts.

The software that is developed during the first phase of QuIDS is ex-
pected to run at Fermilab as part of the MTPIPE demonstration system.
The QuIDS software will run at Fermilab in a grid-based computing envi-
ronment (Fermigrid). For Phase 1 we do not expect any communication be-
tween the demonstration system and systems outside the Fermilab network.
However, an important aspect of the second phase of QuIDS development
is to provide communications capabilities across the Wide Area Network
(WAN) to permit access to QC data from locations outside the Fermilab
network. Furthermore, we anticipate deployment of QuIDS-based systems
at other locations with easy access to QC data from Fermilab.

11

3 Referenced documents

This ConOps document follows the outline and guidance of IEEE Standard
1362-1998, “IEEE Guide for Information Technology-System Definition-
Concept of Operations (ConOps) Document.”

4 Current system or situation

The demonstration system consists of the infrastructure needed to run our
sample application (MTPIPE) in Fermilab’s computing environment. This
is the reference against which candidate technologies will be evaluated. It
has a rudimentary QC system that is referred to as the current system in this
ConOps document. We refer to QuIDS as the proposed system in that it is
the alternative QC system that we are developing. This section provides an
overview of the current system. See the “Proposed system” section for a
description of the proposed QuIDS system.

4.1 Background, objectives, and scope

The current system addresses the QC aspects of JDEM data processing in
the SOC. The demonstration system has several purposes:

• demonstrate existing infrastructure and expertise to DOE and NASA,

• provide a testbed environment in which candidate technologies can
be evaluated,

• provide a baseline against which future candidate technologies can
be compared,

• and provide an environment that serves as a training ground for
developers who may be unfamiliar with data processing concepts
and tools used in astrophysics.

The demonstration system uses the MTPIPE data processing software
that was developed for SDSS to process data collected by the SDSS pho-
tometric telescope. Since Fermilab processed the photometric telescope
data as part of its contribution to SDSS data processing and since several
people who were part of this effort are now working on JDEM, we have

12

the familiarity and the necessary expertise to put together a demonstration
system based on MTPIPE. Furthermore, we selected this particular SDSS
data set since it involves many of the same aspects as data expected from
JDEM, and the SDSS data together with MTPIPE are simple enough to be
used in a modest demonstration system.

By adapting MTPIPE so that it runs in Fermilab’s grid-computing en-
vironment (Fermigrid), we are exploring how grid computing and future
computing clouds can be applied to JDEM. This is important since the
most cost effective approach to solving JDEM’s data processing needs is
to leverage existing software and expertise. In a broader context, we are
also interested in exploring the use of grid and cloud computing for astro-
physics in general, since one can easily imagine that JDEM science research
will benefit from easy access to grid and cloud computing resources.

Since HEP computing has had a significant influence on how grid com-
puting systems have evolved, it is important to understand differences be-
tween HEP and astrophysics data processing needs so that lessons learned
from HEP can be applied to large-scale data processing systems developed
for astrophysics. One noteworthy difference is the need for parallelism in
HEP data processing systems to harness computing resources. HEP data
processing systems often involve hundreds, or thousands, of processing
nodes that perform the same operation on different event data. In contrast,
astrophysics workflows tend to involve complex dependencies between
jobs and do not entail the large-scale replication commonly used in HEP.
This difference between HEP and astrophysics influences capabilities that
are needed for quality control. For example, in HEP the failure of a worker
node or processing job may require that a small fraction of data needs to be
reprocessed but the system as a whole continues to function. The failure
of a node or a particular job in an astrophysics workflow may cause all
data processing downstream of the failure to be halted until the problem is
corrected. This means that failure mitigation in large-scale astrophysics
data processing systems requires active intervention by the control and
monitoring system for efficient operation of the system.

In its current state MTPIPE is more like an HEP workflow in that a
single processing node can be used to perform all of the data processing for
a given data set. This implies a straightforward implementation of MTPIPE
running on Fermigrid. For a future implementation of MTPIPE we will
split the workflow into individual stages that will run on different nodes so
that we can implement a demonstration system that more closely resembles

13

the more complex workflows used in astrophysics.

4.2 Operational policies and constraints

The current system for quality control does not involve any aspects beyond
the usual and customary issues of running data processing systems at
Fermilab and the associated monitoring of QC data. The current system
complies with Fermilab’s Computer Security Policy and the Open Science
Grid Acceptable Use Policy.

There are constraints on the current system in that it uses existing
hardware and services that exist at Fermilab. This includes the use of
Fermilab computing systems and data storage systems.

4.3 Description of the current system or situation

The current system for quality control is first and foremost a system that
encompasses the creation, transport, and storage of QC data. The main
purpose of the system is to manage and provide access to QC data for data
quality monitoring purposes. In this context the QC data includes three
types of data: MTPIPE application data, commands that initiate actions
needed for quality control, and execution environment data. The first type
of data consists of science and engineering data products that are created
by MTPIPE. The second and third types of data consist of control and
monitoring messages, respectively.

The current implementation of the demonstration system manages and
provides access to QC data by creating and moving files that are produced
by the data processing applications that constitute MTPIPE. When a pro-
cessing job is submitted the applications produce files that include QC
information. These files are moved to a QC node and into the mass storage
system together with other output from the MTPIPE applications. Typi-
cally, command and control data are either collected from a front-end job
script into an output file and then transferred using a utility program to
a common access area, or the Unix syslog facility is used to move status
information from a worker node to a central processing area where the
information is collected and then stored in the common access area. Data
format conventions are specified in a document and are enforced by adher-
ence to the conventions. The files in the common access area are discovered

14

by a polling daemon, and are given to a parsing program for inspection
and reformatting. For science and engineering data, utilities such as gridftp
and dcache copy are used to move results to an appropriate storage location.

As MTPIPE jobs are executing in the demonstration system, different
types of QC data must be monitored. The monitoring usually involves
a variety of data access patterns. In the current system this means that
different uses of the QC data must be implemented on a case-by-case
basis. For example, one use of the data may entail the display of images
requested by a user, a second may require that an alert be raised whenever
a workflow fails, and a third may require continuous updates of plots that
show memory usage for each running job. To implement each of these
use cases a specific QC application needs to be developed that is able to
receive data from a QC data-collection node or retrieve QC data from a
common access area so that it can perform its function. Depending on the
data-access pattern, this usually means that each QC application needs to
be implemented with its own interface, or one that is adapted from another
QC application, to access QC data.

5 Justification for and nature of changes

This section summarizes limitations of the current system and provides the
justification for development of the proposed QuIDS system. MTPIPE runs
on a single worker node and the current QC system is based on a simple
file-based mechanism for distribution of QC data. The limitations of this
approach are inherent in any simple file-based system that must be scaled
up in complexity and operated in a distributed computing environment.
The root cause of the limitations in MTPIPE can be attributed to the lack of a
standard Application Programming Interface (API) for quality control. The
simple file-based distribution of QC data in the current system is therefore
replaced by a more capable message passing mechanism based on DDS in
the proposed system.

5.1 Justification of changes

The limitations of a simple file-based distribution system for QC data are
obvious when one considers how a system like this must be modified to op-
erate at a significantly larger scale in a distributed computing environment.

15

There are several specific problems such as the overhead associated with
moving individual files, the need for failure mitigation strategies for each
type of file transfer, implementation of command and control strategies
to address changing data-access patterns and quality of service, and im-
plementation of a flexible mechanism to adapt to changes in the execution
environment. The current system does not support these use cases, which
are summarized in this section.

The overhead for copying individual files is relatively large in the cur-
rent system, which uses gridftp to transfer files from one node to another.
The overhead is problematic when the amount of data transferred is small
and the rate is relatively high. For example, in a situation where the QC
system monitors a few bytes of data every few seconds to keep track of
memory usage, the overhead will be incurred repeatedly. An alternative
way of handling this particular situation in the current system is to use
the text channel to send memory-usage statistics to the grid submission
node. While this approach would work, it introduces yet another transport
mechanism that would have to be supported.

While it is important to limit the number of different types of transport
mechanisms used in a QC system, it is also important to consider each type
of file transfer that occurs in a system that relies on file-based distribution
of data. Each file transfer requires a failure mitigation strategy to respond
to failures. For example, if an MTPIPE job needs to copy files to a particular
location and the destination is temporarily unavailable, the job must handle
the condition sensibly. Should the job pause and wait until the destination
becomes available? Should it continue processing data and periodically
retry the copy operation? What should the job do if it completes its task
and the destination is still unavailable? In the current QC system these
decisions and their implementation are specific to each particular type of
file transfer. For a relatively small QC system like the one used for MTPIPE
this may not be a serious concern, but as the data processing system grows
in complexity the robustness of the QC system and questions of reliability
need to be addressed.

The implementation of command and control strategies is another short-
coming in the current system. The problem is that data handling involves
several different protocols and APIs to move QC data. All of the protocols
and APIs involve one-way communication, which makes it difficult to send
commands back to a data source to affect its operation. Furthermore, they
are all specific to a particular choice of computing cluster and require that

16

particular tools are installed on the cluster. The end result is that most
communications are based on file transfers, and individual jobs perform
a fixed task that cannot change once the job is started. This makes it very
difficult to diagnose problems, especially in long-running jobs.

One more use case that is not addressed in the current system is the
inability to adapt to changes in the execution environment. The proce-
dures and processes that are needed to execute an entire campaign and the
relationships between processes are fixed at the start of execution of the
campaign. This makes it difficult to react to changes in cluster hardware
or software configurations, and difficult to adapt to changes in available
resources or resource requirements. It also means that every invocation of
a communications function has unique failure conditions. The application
developer needs to address each condition, making it difficult to write
predictable, correct, and well-tested code.

5.2 Description of desired changes

A QC system that provides tools to transmit data from the processing nodes
to QC monitoring and control clients can address all of the issues described
in the previous section. We propose to develop one API and protocol to
be used for communications. Furthermore, we propose one method for
configuration of the system and a common set of service level guarantees
for the entire data processing system. These features contribute to the
development of robust code and reliable execution of jobs and campaigns.
The proposed features also provide a less complicated software develop-
ment model for coding, testing, and evaluation. A message passing system
that supports publish/subscribe messaging has the added advantage of
decoupling producers from consumers of data. The loose coupling allows
for independent development of applications that run on data processing
nodes and QC applications that process QC data and present it to users.

Compared to the current system in which the data model is established
by convention, the proposed QuIDS system has a data model that is an inte-
gral part of the QC system. This means that QuIDS is aware of the structure
of exchanged messages in that QuIDS can determine data attribute types
and names. Moreover, the communication is assumed to be bidirectional in
that any application can send or receive data. This allows for the exchange
of configuration information to support changes in configuration, and it

17

allows for client requests for science data and execution environment data.
The communication is established between two or more applications, as
opposed to the current system in which an application writes a file that is
transferred to another location where it is read by another application. In
the proposed system the communication is independent of the applications
that are performing tasks. This makes portability of code and utilities easier
when the data processing is moved to a different computing cluster or
moved to a different operating environment.

A very important issue that is addressed by the proposed QuIDS system
is the reliability and fault tolerance of data transfers using DDS. Depending
on the outcome of the DDS evaluation, DDS may be considered as a can-
didate for the primary data transport mechanism for moving science and
engineering data between worker nodes in JDEM data processing systems.

5.3 Changes considered but not included

There are additional applications of DDS message passing that have been
considered but are outside the scope of this ConOps document. These
include the possible use of DDS for JDEM instrument operations and for
HEP data acquisition systems. The advantages that one would expect to get
from DDS include reliable and fault tolerant data transfers, improved sys-
tem performance through the use of Quality of Service aspects of DDS, and
the ability to implement traffic shaping by configuring multicast groups.

6 Proposed system

The proposed system is named Quality Information Distribution Service
(QuIDS). QuIDS is the proposed QC system for the JDEM demonstration
system, and it replaces the current system described in previous sections
of this ConOps document. Once implemented, the demonstration system
will be used to evaluate the use of DDS as a message passing system for
QC data. This section describes the proposed QuIDS system.

6.1 Background, objectives, and scope

One of the main goals for QuIDS is to reduce the time that scientists,
engineers and operations personnel spend doing routine QC tasks, or

18

doing tasks that are ancillary to their main objectives. These tasks include
software development for software that is developed by scientists and
engineers, such as science software and data quality monitoring software.
The tasks also include integration, testing, and deployment of software,
and the development of monitoring software needed to track the progress
of jobs and identify job failures and reasons for failure. A second goal for
QuIDS is to reduce the number of different ways needed to interact with the
QC system in a distributed data processing environment. The overarching
goals are to reduce the time spent on developing software for JDEM science
operations, and reduce the cost of operating and maintaining software for
the lifetime of the project. This includes the creation, configuration and
deployment of software releases, and the time needed to use the QC system
for its intended purpose of tracking down problems and finding solutions
to improve the overall quality of science data.

The goals for QuIDS are summarized in the Introduction (see Goals
section) of this ConOps document. Here we reiterate the goals and provide
additional information to guide the development of QuIDS and highlight
advantages of individual goals. We include future goals, which are identi-
fied as Phase 2 goals, to provide a roadmap for future development efforts.

6.1.1 Access science data

The goal is to provide access to data products produced by MTPIPE and
specified by the Fermilab GDS team using the Unified Modeling Language
(UML). These data products will be accessible as DDS topics. A related goal
is to investigate how users can request specific data products and subsets
of data products by specifying the granularity of requested data.

The goal requires that all MTPIPE data products are defined in UML. An
important aspect is to define the type of each data product, and specify the
type in a hierarchical UML model. This is largely dictated by FITS headers,
and may include structure attributed to measurements or histograms made
from images. The UML model is converted into a DDS IDL (Interface
Definition Language) specification of the types. The IDL specification is
used to create a reader and a writer for each data type.

This goal has the following advantages:

• A data product is defined in a single location. This avoids having mul-
tiple definitions which would have to be synchronized, and avoids

19

redundant code needed to interpret the structure of the data.

• Requests for data can be made without having to know anything
about how data are produced and where in the QC system the data
are produced. This provides loose coupling between data producers
and data consumers.

• Requests for data can be satisfied without having to change the code
that produces the data. Furthermore, the requests can be satisfied
without having to reconfigure existing applications, even while the
data processing system is operating.

6.1.2 Access execution environment data

The goal is to provide access to information that characterizes the execution
environment for MTPIPE data processing jobs. The information of interest
will be specified by the Fermilab GDS team.

For this goal we intend to define a minimum of two process variables
that define data structures for the execution environment. The process
variables should be reported periodically, upon request, and when values
of the variables move outside of a predefined range or cross a specified
threshold. Three possible quantities that are of interest are: job completion
information, process resource usage, and resource states. In this case we use
the term “resource” to refer to hardware resources in the data processing
environment.

Similar to the previous goal for accessing science data, this goal requires
that data products are defined in UML, converted to DDS IDL, and the IDL
is then used to create readers and writers. The advantages for this goal are
the same as for the previous goal.

6.1.3 Establish Quality of Service settings

The goal is to investigate how one establishes Quality of Service (QoS)
settings that guarantee that mission critical data are delivered as requested,
and to establish settings that can improve overall system performance
while achieving best effort delivery.

This goal requires that QoS settings can be adjusted so that QC data
are delivered reliably in a bursty traffic environment. It also requires that
data can be delivered in a so-called roving laptop environment. This means

20

that a user who is using a laptop computer to monitor QC data can change
locations (possibly changing their IP address) and still maintain an active
connection to the QC system. A third requirement is that the QC system
reports problems in a running application, running workflow, or in a data
processing campaign within minutes after discovering the problem.

6.1.4 Provide Python bindings

The goal is to provide Python bindings that QuIDS users can use to access
data.

6.1.5 Measure performance limits

The goal is to provide message passing capabilities with varying degrees of
QoS and tunable parameters, such as message size and messaging rate, to
measure the performance of the messaging software.

This goal constitutes the performance evaluation of DDS as a message
passing system for QC data. We expect to determine throughput character-
istics as a function of message size, request frequency, delivery frequency,
and as a function of the number of data producers and consumers. We also
expect to learn how the system behaves in the event of different kinds of
resource failures, including failures in DDS itself.

One of the benefits of this goal is the opportunity to learn how to
establish optimum QoS settings so that guidelines for the use of QuIDS can
be developed early on. We also learn the range of applicability for the use
of DDS for quality control.

6.1.6 Allow data access over the Wide Area Network (WAN)

The goal is to provide message passing capabilities for nodes that pro-
cess data in the Fermilab computing environment and communicate with
computing systems outside the Fermilab network.

This is a Phase 2 goal for establishing secure, reliable and timely access
to science data and execution environment data from locations outside the
Fermilab network. The security of the QC system must be in compliance
with Fermilab’s Computer Security Policy. However, the user experience
should be the same for a remote user as it is for a local Fermilab user who

21

accesses data within the Fermilab network. The amount of time required to
gain access rights should be no different for the two types of users.

This goal has the following advantages:

• A user of the system does not need to learn about, install, or maintain
any additional tools other than the tools that are used from within
the Fermilab network.

• The cost of maintaining different access methods depending on loca-
tion is reduced.

6.1.7 Create a system that is usable by scientists and administrators

The goal is to provide a message passing system that can be deployed in
the Fermilab distributed computing environment, and is maintainable and
easy to use.

This is a Phase 2 goal that aims to reduce the time and effort needed to
define, use, and deploy a new data product. It also aims to reduce the time
needed to build, release, deploy, and provision a QC system and reduce
the time needed to use the QC system for its intended purpose of tracking
down problems and finding solutions to improve the overall quality of
science data.

This goal has the following advantage:

• Reduce the number of software engineers and developers needed to
maintain the QC system.

6.2 Operational policies and constraints

The proposed system for quality control does not involve any aspects
beyond the usual and customary issues of running data processing systems
at Fermilab and the associated monitoring of QC data. The proposed
system must comply with Fermilab’s Computer Security Policy and the
Open Science Grid Acceptable Use Policy.

Development of the proposed system should follow an approach used
for software development by NASA funded projects. We are using Ra-
tional DOORS for requirements management, and are receiving guidance
from members of the James Webb Space Telescope (JWST) Science and
Operations Center development team.

22

There are constraints on the proposed system in that it should use
existing hardware and services that exist at Fermilab. This includes the use
of Fermilab computing systems and data storage systems.

Another constraint for the proposed system is that all QC data should
be archived in a database so that users can request specific QC data when
needed. For example, if a user of the system is debugging problems by
looking at images, the user should be able to access image data in a database
instead of having to subscribe to an image data topic and then having to
receive every instance of that topic.

6.3 Description of the proposed system

QuIDS is the proposed QC system for the JDEM demonstration system.
Figure 2 shows the functions of the QuIDS system, their relationships, and
the communication domains in which the functions are performed. The
cloud shape in the figure denotes a computation domain that represents a
computing cluster with its own local network. Each pill shape denotes a
function performed in the system, and each circle denotes a user function.
Rectangles are used to denote message-passing backbones, and the cylinder
denotes a mass data storage system, such as a relational database. The
figure shows which functions are performed within the Fermilab network,
and which functions may also take place on a wide-area network.

The cloud shaped computation domain represents a single deployment
of a workflow. A workflow consists of a sequence of operations needed
to perform a task, such as running an MTPIPE campaign consisting of
multiple MTPIPE data processing jobs. The computation domain is a logical
construct that represents a particular task. A production system may be
comprised of one or more active computation domains, each performing
different tasks. The computation domain includes all of the resources
needed for a task. It includes the functions shown in Figure 2, which
are linked by the DDS local messaging backbone. The main function in
the computation domain is the image processing function, performed by
MTPIPE applications in our demonstration system. Individual MTPIPE
jobs are monitored by the active job monitoring function, and the campaign
management function is responsible for managing all of the jobs needed to
process data for an entire campaign.

23

Figure 2: Block diagram showing functions of the QuIDS system, rela-
tionships between functions, and communications domains in which the
functions are performed.

The campaign management function communicates with functions out-
side the computation domain through the DDS site-wide message passing
backbone, which operates within the Fermilab network. The figure shows a
campaign submission function that is used to coordinate the tasks associated
with computation domains. Data from a computation domain are trans-
ported to a quality control archiver that stores data in a data storage system.
Data access is provided through an authenticated web service.

The authenticated web service gives users access to all supported user
functions for the demonstration system. Figure 2 shows the user functions
at the bottom of the figure. These user functions are available inside and
outside the Fermilab network. They include active displays for monitoring
QC data, a monitoring control function that gives users control over the
QuIDS system, and user queries that provide access to archived QC data.

24

6.4 Support environment

The proposed system includes a computation domain (see Figure 2) that
runs MTPIPE campaigns in the Fermilab grid computing environment.
There is another possible environment that is being considered for com-
puting clusters at Fermilab, namely cloud computing environments. R&D
on cloud computing is being done at Fermilab, so this provides a possible
future environment for deploying computation domains.

7 Operational scenarios

We envision a phased development of the QuIDS system. The operational
scenarios that are included in this section include some scenarios that will
not be satisfied early on, but will be satisfied in later phases of QuIDS
development.

7.1 User observing campaigns

The use-case actor, referred to as a user, in these scenarios is a JDEM scien-
tist.

7.1.1 Check status of previously submitted campaign

A user has submitted a campaign to process data collected during a single
night of SDSS operations. To see how the campaign is doing, he visits a
web page and finds the entry for his campaign in a list.

He selects his campaign, and the web page for that campaign indicates
that it has passed the excal stage, which means it is “in the middle” of the
MTPIPE workflow. He clicks on one of the indicated outputs, and looks
at a plot of astrometric errors for that data. The plot indicates a serious
problem: all of the star positions are flawed.

The problem is that only one star was used for astrometry. Now the
user requests the catalog that is produced by excal. Only one star is in the
catalog. This is an unmistakeable failure. The obvious thing to check is the
output of the previous stage in the MTPIPE workflow.

The user goes back to the previous stage and looks at the QC data.
He is interested in histograms of pixel values and pixel biases. The bias

25

histogram looks flawed in that the image seems to have been classified
incorrectly. He finds a particular image that doesn’t look correct, so he
wants to see that image.

He goes back to the web page for the campaign and requests the image
he is looking for. The image in question looks like a dome flat, not a bias
flat.

Having determined that this campaign is not worth continuing, he tells
the system to discontinue processing as soon as possible. The status of the
campaign reflects its state: first “stop pending,” and then “stopped.”

This operational scenario may lead to the “Actively monitor campaign”
scenario.

7.1.2 Actively monitor campaign

Having discovered that campaigns can fail because of bad biases, the user
wants to check every future campaign he submits during the next several
days and look at all bias histograms. He configures QuIDS to create a web
page that will contain all bias histograms, updated whenever a new bias
histogram is produced.

He further configures the system to diagnose bad bias histograms, and
send him an email when a bad histogram is found. The email will contain
the bad histogram.

7.1.3 Investigate system characteristics of running jobs

The user looks at a page that lists all of his running jobs belonging to
a particular campaign. Noticing that one job has been running for an
unusually long time, he wants to see a histogram of CPU time for this
stage of the workflow for previous jobs and wants to see where this job
lies on the distribution. He also wants to see a similar result for memory
consumption of the job. Having studied the histograms, the user wants to
look at the load on the processor and the output of a command like top to
see if perhaps some other job is using most of the CPU time. The user is
interested in a breakdown of the time since the beginning of the job: CPU
time, kernel time, wall-clock time. He wishes he had a general tool to allow
him to investigate as if he were logged in to the system on which the job is
running.

26

This operational scenario may lead to the “Check status of previously
submitted campaign” scenario.

7.1.4 Express interest in job failures

The user configures the system to tell him about jobs that fail.

7.1.5 Investigate a failed job

The user has configured the system to tell him about jobs that fail. The leads
to the user receiving an email specifying that a particular job has failed.
The email includes a link to a report describing the failure. The email may
contain summary information about the job, for example an indication of
which campaign this job is part of and which night’s data the job covers.

The user wants to see the STDOUT and STDERR outputs from the
job and a stack dump if one was produced. The version of the MTPIPE
software that is being run is included in the report.

7.1.6 New user investigates the monitoring system

A new user wants to understand what QC data are being monitored and
can be observed. The user is able to find out all types of QC data that can
be monitored for a specific version of MTPIPE. He must be able to do this
even when no job is running.

The system shows a list of all the plots and tables that can be shown.
Tables are shown as table headings, and plots are shown as examples of the
plot. The plots and tables are presented in a manner that makes sense to a
JDEM scientist using the system.

7.2 Publishing scenarios

The use-case actor in these scenarios is a workflow participant. It is the pro-
gram (perhaps a script) that executes MTPIPE and executes any necessary
pre-processing and post-processing.

We assume that units of work are uniquely identifiable by descriptive
metadata. The metadata specify the participants that have performed
actions on the units of work. We call the identifying information the job id.

27

We also assume that a specific worker node (see Figure 1) is responsible
for a sequence of jobs, and that we want to monitor the behavior of each
worker node individually.

In the demonstration system, we identify several participants:

• mtFrames,

• excal,

• and kali.

7.2.1 Publish job success information

When a job has succeeded, a workflow participant publishes a job completion
record. This record includes the following data:

• job id,

• start time of the job,

• end time of the job,

• and the id of the worker node that executed the job.

7.2.2 Publish job failure information

A workflow participant detects that its job has failed. It must collect the
relevant information about the status of the failed job, and of the system on
which it was running, and post the information.

In addition to the information in the “Publish job success information”
scenario, the following data should be included:

• the exit code of MTPIPE,

• and any text written to STDERR by MTPIPE.

7.2.3 Publish job process information

Since a job entails the processing of many units of work, we want to be
able to monitor the progress of each job as it runs. At each transition
between units of work, a workflow participant should publish a record of
the particular change in transition. This record should include:

28

• the state it is leaving (e.g. “idle”, “processing work unit n”),

• the state it is entering (e.g. “processing work unit m”, “idle”, “failed”),

• and any other relevant state changes.

7.2.4 Publish calibration histograms

A calibration workflow calculates calibrations that are stored in the man-
aged data store (see Figure 1). Monitoring the quality of calibration data is
one aspect of the data quality monitoring system.

To make this possible, calibration workflows should publish a calibra-
tion histogram (or set of histograms) for each unit of work they completes.

7.2.5 Publish calibration images

It will sometimes be useful to do more detailed processing of the raw data
from which calibrations are calculated. To make this possible, a work-
flow participant that is operating as part of a calibration workflow should
publish the bias images (for example) that are being used for calibration
purposes.

7.3 Control scenarios

The use-case actor, referred to as a user, in these scenarios is a JDEM scien-
tist.

7.3.1 Modify the frequency of a given measurement

While performing the scenario named “Investigate system characteristics
of running jobs,” a user decides that the time required to provide updates
of monitored quantities is too long. The user reduces the amount of time
between updates of the monitored quantities.

7.4 Test-cases used to evaluate QuIDS

A user wants to process a single night of data with MTPIPE. He submits
a campaign to process that night’s data. Starting the campaign includes
starting the monitoring infrastructure if it is not yet running.

29

A tester of this operational scenario wants to exercise a specific configu-
ration of QuIDS.

1. The tester edits the script that is used to process a single night of
data so that the information he wants to monitor is published.

2. The tester configures the DDS backbone to operate in the man-
ner he wishes to test. This must handle the case when the
backbone is already running.

3. He configures the publishers of execution environment data.

4. He configure the subscribers he wants to test:

• the QC archive node, which subscribes to (almost?) every-
thing and saves QC data in long-term storage, and

• the data quality monitoring nodes.

5. The tester configures the mock web server that consumes and
displays published data, such as alarms that are published and
require attention.

8 Analysis of the proposed system

In this section we provide a brief analysis of the proposed system. This
analysis includes a summary of anticipated improvements, a discussion
of disadvantages and limitations including qualitative and quantitative
features that would lead us to reject the proposed system, and a brief
discussion of alternatives we have considered.

8.1 Summary of improvements

The proposed system addresses a number of shortcomings in the current
system. These shortcomings are not that significant in the current sys-
tem, but become increasingly important as the scale of the distributed
data processing system and associated QC monitoring system increases.
For example, the overhead associated with moving individual files is not
a particular concern in the current system, but the overhead associated
with file movement in a significantly larger scale distributed computing

30

environment is a concern. Similarly, a larger scale system requires failure
mitigation strategies for different types of file transfers, command and
control strategies to address changing data-access patterns and quality
of service, and a methodology that permits adaptation to changes in the
execution environment. All of these potential shortcomings are described
in greater detail in the “Justification of changes” section of this ConOps
document.

8.2 Disadvantages and limitations

The demonstration system that we are developing at Fermilab will be used
to evaluate the use of DDS as a message passing system for QC data. We
have identified the following list of qualitative and quantitative features
that would cause us to reject DDS, or more specifically the OpenSplice
implementation of DDS, for use in a production data processing system.

8.2.1 Qualitative features

The following list of qualitative features will be evaluated to determine the
suitability of DDS for monitoring QC data in a production system.

• Availability, quality, learning curve, and suitability of schema evo-
lution and language bindings for several languages such as C++,
Python, and Java, and

• the impact on a running system when DDS topics are modified, or
when code associated with the QuIDS system is modified.

Factors that would lead us to reject the use of OpenSplice DDS in a
production system are the following:

• Software bugs in the DDS implementation,

• License model that interferes with our intended use of DDS or consti-
tutes a significant cost,

• Inconsistent use of C++ or bad practices in C++ coding in DDS,

• Lack of thread safety,

31

• Changes or additions to type definitions that require a restart of the
entire data processing system (for example, a new type is introduced
in a reader or writer used in one part of the system),

• Lack of support for a particular computer system or architecture that
we intend to support for JDEM,

• Inability to satisfy Fermilab security requirements,

• Inability to operate in a Wide Area Network (WAN) environment.

8.2.2 Quantitative features

The following quantitative features will be evaluated to determine the
suitability of OpenSplice DDS. The first address the performance of DDS
data transfers, and the second measures robustness with regard to data
transfer errors.

• We will compare the performance of a test application to custom built
applications using data sizes and rates from several projects. These
projects include: CMS, MicroBooNE, NOvA, and JDEM.

• We will determine the reliability of DDS with regard to data transfers.

8.3 Alternatives and trade-offs considered

A possible alternative to the use of DDS for managing QC data is the use
of a database. The database could serve as the repository for all QC data,
and all clients would use the database to access the QC data. One can think
of this as a different kind of publish-subscribe system. Instead of using
the DDS API to transfer data one uses a database API to store and retrieve
data.

9 Notes

We include a list of acronyms and abbreviations in this section. See the
Glossary for a definition of terminology used in this ConOps document

API - Application Programming Interface

32

B&R - Budget and Reporting

CMS - Compact Muon Solenoid,an experiment at the Large Hadron Col-
lider

DDS - Data Distribution Service, a customizable quality of service pub-
lish/subscribe standard from the Object Management Group

DOE - Department of Energy

DRFS - Data Reduction Framework Sensor

DRM - Data Reduction Module

FNAL - Fermi National Accelerator Laboratory

FRM - Fault Recovery Module

FTP - File Transfer Protocol

GDS - Ground Data System

gridftp - an extension of the standard File Transfer Protocol (FTP)

HEP - High Energy Physics

JDEM - Joint Dark Energy Mission

JWST - James Webb Space Telescope

LBNL - Lawrence Berkeley National Laboratory

LSST - Large Synoptic Survey Telescope

MicroBooNE - a neutrino experiment at FNAL

MTPIPE - Monitor Telescope Pipeline, a data processing workflow used to
process data collected by the SDSS photometric telescope

NASA - National Aeronautics and Space Administration

NOvA - a neutrino oscillation experiment at FNAL

OMG - Object Management Group is a group that maintains standards for
distributed, object-oriented systems

33

Python - a computer programming language

QC - Quality Control

QCM - Quality Control Module

QCS - Quality Control System

QoS - Quality of Service

R&D - Research and Development

SBIR - Small Business Innovation Research

SDSS - Sloan Digital Sky Survey

SOC - Science Operations Center

Tech-X - Tech-X Corporation

UML - Unified Modeling Language

WAN - Wide Area Network

10 Glossary

actor - a software component that performs a task, typically by reading
input and producing output.

campaign - a workflow initiated by a human.

Fermigrid - the GLOBUS-based grid computing infrastructure installed
and in use at Fermilab.

FITS file - A FITS file is a sequence of HDUs. The first HDU in a FITS file
(the primary HDU) has special requirements placed upon it.

HDU - a header data unit in a FITS file. This is a sequence of name/value
pairs (the header) followed by the data described by the header.

instantiated workflow - a workflow in which all data sources and partici-
pants, as well as their configurations, are specified.

34

job - a submission to a batch queue. A workflow may contain participants
that perform job submissions and manage interactions with the batch
system. The submission itself may consist of a workflow (or subwork-
flow) together with the engine required to execute it, provided it is
compatible with the batch system.

participant - an actor whose action is triggered by a workflow engine. From
the point of view of the workflow engine, the task carried out by a
participant is atomic in that the task completes successfully or fails
to complete. Moreover, the workflow engine does not manipulate the
internal state of a participant. A participant might, for example, be
a shell script that runs a data processing application to perform a
specific task.

pipeline - a workflow in which the participants are arranged according to a
pipe and filter architecture. In such an architecture, the participants
process units of work and can execute concurrently, each reading input
from its predecessor and providing output to its successor. See, for ex-
ample, the wikipedia entry on software pipelines, Avgeriou & Zdun,
and Clements et al.. (Often, when astronomers speak of “pipelines,”
what is meant is either a psuedopipeline or some other workflow, or
sometimes even just an isolated participant.)

publisher - a software entity that prepares data for transmission based on
one or more writers.

quality of service (QoS) - the ability to provide different priorities to data
flow in a network. Quality of service refers to control mechanisms
that are used to reserve resources for different applications, users or
data flows, or to guarantee a certain level of performance.

reader - a software entity that reconstitutes an object from the data that
has been received from a writer.

roving laptop environment - an environment in which the user can dis-
connect from the network and later reconnect (possibly with a differ-
ent IP address), and is able to continue the work being done before
the interruption in the connection.

stream of data - a sequence of units of work of the same type.

35

http://en.wikipedia.org/wiki/Pipeline_%28software%29
http://hydra.infosys.tuwien.ac.at/Staff/zdun/publications/ArchPatterns.pdf
http://lccn.loc.gov/2002024940
http://en.wikipedia.org/wiki/Pipeline_%28software%29#Pseudo-pipelines

submit node - the node that manages a grid job, and that can do moni-
toring of other nodes involved with running the job. The nodes that
run the job can not easily contact each other because they don’t know
what is the id of the node in which another part of the job is running.

subscriber - a software entity that receives data using one or more readers.

unit of work - the smallest data element that is processed in its entirety by
an actor. Usually actors operate on a sequence of data elements.

workflow - a collection of participants and a defined set of rules specifying
when (under what conditions) and how (with what parameters, con-
figurations, and input data) the actions performed by the participants
should be triggered.

workflow engine - a software application that manages and executes work-
flows.

workflow management system - a software application that triggers the
actions performed by participants according to the rules that define
that workflow. A workflow management system may additionally
record provenance and other metadata about the execution of the
workflow, and may provide tools for users to specify workflows.

workflow template - A workflow in which a subset of the data and/or par-
ticipants are specified abstractly. At a minimum, a workflow template
contains only the workflow rules, which refer to data and actors using
undefined symbols.

writer - a software entity that makes instances of a user-defined data struc-
ture available over a network.

36

	Introduction
	Overview
	Goals

	Scope
	Identification
	Document overview
	System overview

	Referenced documents
	Current system or situation
	Background, objectives, and scope
	Operational policies and constraints
	Description of the current system or situation

	Justification for and nature of changes
	Justification of changes
	Description of desired changes
	Changes considered but not included

	Proposed system
	Background, objectives, and scope
	Access science data
	Access execution environment data
	Establish Quality of Service settings
	Provide Python bindings
	Measure performance limits
	Allow data access over the Wide Area Network (WAN)
	Create a system that is usable by scientists and administrators

	Operational policies and constraints
	Description of the proposed system
	Support environment

	Operational scenarios
	User observing campaigns
	Check status of previously submitted campaign
	Actively monitor campaign
	Investigate system characteristics of running jobs
	Express interest in job failures
	Investigate a failed job
	New user investigates the monitoring system

	Publishing scenarios
	Publish job success information
	Publish job failure information
	Publish job process information
	Publish calibration histograms
	Publish calibration images

	Control scenarios
	Modify the frequency of a given measurement

	Test-cases used to evaluate QuIDS

	Analysis of the proposed system
	Summary of improvements
	Disadvantages and limitations
	Qualitative features
	Quantitative features

	Alternatives and trade-offs considered

	Notes
	Glossary

